Ischemia Detection using Supervised Learning for Hierarchical Neural Networks based on Kohonen-maps

نویسندگان

  • L. Vladutu
  • S. Papadimitriou
  • S. Mavroudi
چکیده

The detection of ischemic episodes is a difficult pattern classification problem. The motivation for developing the Supervising Network Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications. The sNet-SOM uses unsupervised learning for the regions where the classification is not ambiguous and supervised for the ”difficult” onesin a two-stage learning process. The unsupervised learning approach extends and adapts the Self-Organizing Map (SOM) algorithm of Kohonen. The basic SOM is modified with a dynamic expansion process controlled with an entropy based criterion that allows the adaptive formation of the proper SOM structure. This extension proceeds until the total number of training patterns that are mapped to neurons with high entropy (therefore with ambiguous classification) reduces to a size manageable numerically with a proper supervised model. The second learning phase (supervised training) has the objective of constructing better decision boundaries of the ambiguous regions. In this phase, a special supervised network is trained for the task of reduced computationally complexityto perform the classification only of the ambiguous regions. After we tried with different classes of supervised networks , we obtained the best results with the Support Vector Machines (SVM) as local experts. Keywords— Self-Organizing Maps, Ischemia, Entropy, Principal Component Analysis, Divide and Conquer algorithms, Radial Basis Functions, Vapnik-Chervonenkis Dimension, Support Vector Machines, Computational Complexity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Ischemia detection with a self-organizing map supplemented by supervised learning

The problem of maximizing the performance of the detection of ischemia episodes is a difficult pattern classification problem. The motivation for developing the supervising network self-organizing map (sNet-SOM) model is to exploit this fact for designing computationally effective solutions both for the particular ischemic detection problem and for other applications that share similar characte...

متن کامل

Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)

According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001